W) 2745

Deep Reinforcement Learning and
Applications to Robotics

Donglin Wang
April 15, 2024



Outline

1 Deep Reinforcement Learning

J Applications to Robotics



Deep Reinforcement Learning (DRL)

» Model-free DRL

. Model-based DRL

» Inverse Reinforcement Learning
. Offline Reinforcement Learning

» Large Pre-training DRL Model



Terminology & Notation of DRL

ooooooo

S; — state
0; — observation 7o (as|os) — policy
a; — action 7o (az|sy) — policy (fully observed)




Goal of DRL

T
P9(817317-- ST,aT H at|St St+1|St;at)

0* = arg mgLX ETNpe(T) [; r(s¢, at)]




Policy Gradients
VoJ (0 szzvg log mo(a; ¢|Si.¢) (i (Sz',tf,az',t')>

1
1 N T 1
VoJ(0) ~ — > ) Velogmg(ailsie)Alsic aiz)

1=1 t=1



Value function Fitting

4 L N7

1=1 t=1

A“(st,at) — QW(St, at) - VW(St)

~N

VoJ(0) ~ v Z Z Vologmo(ai|sit)A™ (Sit, i)

J

fit what to what?

4

Q7 (s¢,ar) =~ r(se,ar) + V7 (Se41)

AT (s, as) & r(sg,ar) + V7 (sir1) — V™ (st)

V7(s)
parameters ¢

I: Vit ~r(Sit,ait)+ V(;T(Sz',t—i—l)

L(¢) = %Z AJ(Sz‘) —Yi 2

)



Actor-Critic Algorithm (with Discount)

batch actor-critic algorithm:

= 1. sample {s;,a;} from my(a|s) (run it on the robot)

2. fit VJ(s) to sampled reward sums. )

3. evaluate A™(s;,a;) = 7(s;,a;) + YV (si) — V[ (s:)
4. VoJ(0) = > . Vologmg(a;|s;)A™(s;,a;)
5.0+ 0+ aVeJ(0)

4 :
Run policy:
1. Collect data
k2. Fit value function

\ 4

online actor-critic algorithm:

~=> 1. take action a ~ my(als), get (s,a,s’,r) (Update policy:
2. update ‘A/c;r using target r + ”yf/g(s’) 1. Evalu_ate Advantage A
3. evaluate A™(s,a) = r(s,a) + WVJ(S’) _ f/qzr(s) \2' Gradient Descent
4. VoJ(0) = Vylogmy(als)A™ (s, a)

e 5.0 0+ aVeJ(0)



“Max” Trick to Remove Policy Gradient

Max Trick for Q-Value
g

1. collect dataset {(s;,a;,s.,;)} using some policy

@ 2. set yi < T(Siaai> -y maxy’ qu(S;Z?a;J)
8 3. set ¢ <— argming % > Qo (siai) — yill ) Qy(s,a)

Problem 1): Correlated samples;
Solution: Replay Buffer;

(s,a,s’,r) "
dataset of transitions

(“replay buffer”)
off-policy

Q-learning

w

mw(als) (e.g., e-greedy)



“Max” Trick to Remove Policy Gradient

is not gradient descent!

ing

Q-learni

Problem 2)

a

/

(

Qg
no gradient through target value

Z-,az-) — r(sz-,az-) —+ Y 1mMaXg/

S

(

(Qo

i)

Si,

(

dQ ¢
d¢

¢ ¢ —a

Q¢(Sv a)

Target network

Targets don’t change in inner loop! But regression is more stable.



Q-Learning with Replay Buffer and Target Network

& 1. save target network parameters: ¢’ < ¢
2. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B
X@ 3. sample a batch (s;,a;,s;,r;) from B
X
d
e g o - a X, P ad Qs a) - (s an) + 5y maxa(Qu)(sl a)))

Targets don’t change in inner loop!

UOISSa439Y
PasIAIRANS

4

f@ 1. take some action a; and observe (s;,a;,s;,r;), add it to B \

2. sample mini-batch {s;,a;,s’,r;} from B uniformly
3. compute y; = fr] + 7 maxy Qg (8}, a}) using target network Qg K=1
4. o« ¢ — O‘ZJ dé 2 (s5,a5)(Qq(ss,a5) — yj)

\&j 5. update ¢: copy ¢ every N steps  Target: copy value network! )

5. update ¢': ¢ < 7¢" + (1 —7)¢ 7 = 0.999 works well



DRL Algorithms

Atari, AlphaGo/AlphaGo Zero, /
AlphaZero, [

= DQN (Deep Q Network): AphaFold

* Use NN to estimate Q; o

* Experience replay and fixed target
network for convergence;

e Variants: Double DQN, Prioritized NG T .
. . Double DQN deterministic policy gradients
replay, Dueling DQN, Categorical DQN, -
Noise DQN, Rainbow D
- / deep-lA)PG (DDPG)
" PG and Actor-Critic: = o Alot...
* Variants: AC’ AZC’ A3C and SAC ’ asynchrono;s advantage actor-critic
7 (CategoricalDQN s
* DPG and DDPG: S\

noise DQN

* Deterministic policy gradients

Rainbow

= TRPO and PPO



Deep Q Network

* DQN: Use deep NN to compute Q, which is a value-based method

 Before DQN, all attempts failed due to the instability:
o Unknown reward scale of Q-value, leading to the failure of gradient BP;
o Strong correlation between continuous-input data or image, leading to easy
convergence;
o Even a fine variation on Q-value causes a huge change on policy (From one end to
another).

e Solution from DeepMind
o Clip rewards or normalize network adaptively to sensible range;
o Experience Reply (NIPS): store experience (s,a,r,s’); randomly drawn;
o Freeze target Q-network:

2
loss = <r +ymaxQ(s’,a’,w™) — Q(s,a,w) ,
a’



Deep Q Network

Replay + Target Q

8000 Both are indispensable
7000
6000
5000
4000
3000
2000
1000 I

N | o[ .

Breakout Enduro River Raid Seaquest Space Invaders

B Q-learning B Q-learning+TargetQ B Q-learning+Replay ™ Q-learning+Replay+Target Q



Overestimation of Q-learning in DQN

Overestimation: target value y; = r; + Y maxy, Qe (s}, a})

this last term is the problem

¥

[Q¢/(S’ ,a’) is not perfect — it looks “noisy” ]

hence max, Qg (s',a’) overestimates the next value!

¥

note {hat maxy Qg (s',a") = Qu (s, argmaxy Qu (s',a’)) J

value also comes from ()4 action selected according to @)y




Double DQN

note that max, Qu (s',a’) = Qu (s', arg maxy Qu (s',a’))

value also comes from Qg action selected according to @)y

if the noise in these is decorrelated, the problem goes away!

idea: don’t use the same network to choose the action and evaluate value!

(standard Q-learning: y = r + vQ (s', arg maxar Qg (s', a’ﬁ

double Q-learning: y = r + (s’ arg maxy @0, a’
¢ Q gy 1Qg (s', arg maxa ) )

just use current network (not target network) to evaluate action

still use target network to evaluate value!

Current network: action




Multi-Step Returns

Q-learning target: y;; = rj; +ymaXa,, , Q¢ (Sjt+1,2541)

/! N

these are the only values that matter if ), is bad! these values are important if Qg is good

¥

-

\_

can we construct multi-step targets, like in actor-critic?

_ t+N—-1 ¢ N
Yjt =2 p—¢ 7V Tip T MaXa; .y Qg (Sj,t+ N> t+N)

N-step return estimator
+ less biased target values when Q-values areinaccurate

J

A 4

this is supposed to estimate Q™ (s;, a;+) for

1 if a; = argmaxa, Q4 (St, at)
0 otherwise

r(arls) = {



Dueling DQN

*Dueling Network: Q=V+A separate state value V and advantage A
oValue function V measures the value how good it is to be in a particular state s.
oHowever, Q function measures the value of choosing a particular action when in
this state.
oAdvantage function A obtains a relative measure of the importance of each action.

Q(s,a;0,a,8) =V (s;0,8) + A(s,a; 0, o)

4 ) / V(s) I
7 Vs I

S % csal| | o=

L/ I

N /
DQN Dueling Network K Als,a) /

Q(s,a)




Prioritized Replay

» Use priority queue to weight experiences in experience Memory based on their
error (surprise) in DQN

* The bigger the TD error, the higher the priority.

natural_DQN - DQN_with_prioritized_replay

train train

loss i ! loss i i

Q_target (_target IS_weights

| evalnet | l target_net | o V eval_net \ target_net |

L.



Rainbow

* Rainbow is a model-free, off-policy, value-based and discrete DRL method.
* Rainbow combines all 6 improvements in DQN, including

* Double Q-learning

* Multi-step learning

* Dueling networks

* Prioritized replay

e Distributional RL: Q value becomes Q distribution (more stable)

r + vy max Q(sy;1,a)

Q(s¢41,a) = Zzipi(st 1,a)

. | |
! z0 i [AR K, 2) z3 z4 z5
° NOISy Nets r+vz0 r+yzl r+yz2 r+yz3 r+yz4 r+yz5

1) independent Gaussian Noise: add noise on weights and No. is p*(g+1).
2) Factorized Gaussian noise: add noise on neurons and No. is p+q

P

s

o , X




Soft Actor-Critic
e Standard RL maximizes the expected sum of rewards:

Zt E(Staat)NPﬂ- 7(s¢,a)]

» SAC favors stochastic policies by augmenting the objective with the expected entropy
of the policy:

T
J(m) = 3" Eqsy ayps [F(51:20) oM (m( - |s2)

e Soft state value function:

V(st) = Eayr [Qlst,a0) ~{log m(als:




Soft Actor-Critic

e
222 RN
o:-.‘a‘::?-

= é‘

Value < Value

Network Target

Q St Policy
Network 5 Qo(se,a) Network '

75
22K
e

%, RSN
oo

SO

e Soft value function V (MSE):

2
Jv(¥) = Es,~p % Vi (st _]EatNW¢ Qo(st,ay —10g7r¢ atlst

@,][,JV ) =V Vi(se) (Vip(se) — Qo(st, ar) + log my (as|s:




Soft Actor-Critic

e Soft Q-function parameters Q (MSE):

1

Jo(0) = E(s, .a)~D [5 (Qg(st,at) — Q(St,at))2]

A

Q(s¢,ar) = (s, a) + VEst+1~p[[V¢(St+1)]]
@GJQ(H) = VoQo(as, st) (Qe(st,at) — (s, ar) — 7V1Z<St+1))

* Policy parameters learned by minimizing expected KL-divergence:

exp (Qo(sy. ')))]

Z@(St)

Jr(@) = Eg,~p [DKL (W@(' St)

e Target value network (for overestimate): moving average of value network weight

1@(—7&4—(1—7‘)&



Soft Actor-Critic

Algorithm 1 Soft Actor-Critic

[nitialize parameter vectors 2. 1, 6, ¢.
for each iteration do
for each environment step do
ap ~ my(ag|st)
St4+1 ™~ P(St+1 |5t;at)
D+ D U{(s¢, ag,r(s¢, a¢),8¢41)}
end for
for each gradient step do
b — AV Jy () 7
Q@ — /\W_VQJﬁ('@) __— Update Policy
T+ (1 —7)
end for > Update target value network
nd for

Update value V

Update Q

use the minimum of Q-functions for the value gradient



Q-learning with continuous actions

What'’s the problem with continuous actions?

| 1if ay :@Xat QM@ this max
m(a¢lse) = { 0 otherwiseé

_ I this max particularly problematic
target value Yy; =1+ maxag Q¢, (@ P yp

4

How do we perform the max?




DDPG-Learn an Approximate Maximizer

maxa Qy(s,a) = Qu(s,argmaxs Qu(s,a))
idea: train another network p(s) such that pg(s) ~ arg max, Q4(s, a)

¥

. d() da d()
how? just solve 6 <+ arg max S, g (S ¢ _ ¢
j gmaxg Qg (s, po(s)) 0 = 78 da

new target y; = r; + Qg (s}, po(s})) =~ rj + 7Q¢ (s}, arg maxar Qg (s}, a3))

DDPG: $

m 1. take some action a; and observe (s;, a;,s;, r;), add it to B \

2. sample mini-batch {s;,a;,s’,r;} from B uniformly
3. compute y; = ’r] + Qg (S}, per (s})) using target nets Qg and jig:
4. ¢+ ¢ — ozzj a5 (85,85)(Qp(s;,a;) —y;)  Value Network

5. 00+ p Z; =5 (s5) C?; (s, 1(s;4)) Policy Network; deterministic
\b 6. update ¢’ and @’ (e.g., Polyak averaging) /




Trust Region Policy Optimization (TRPO)

Recall:

Problem: unstable!
REINFORCE algorithm:

1. sample {7} from my(as|s;) (run the policy) Bad a may cause terrible policy g !

2. VoJ(0) =~ Y., (>, Vologmg(allsi)) (3, r(si, al))
3. 00+ aVyJ(0)

Question: How to make policy monotonic improved? (always cause better policy?)

A

1 N T ) A A
Vol (0) ~ Vo log We(ai’t | Siat) Qit — Ean’,t mm) [,V log mo(as | s¢)As
N “4

S.t. %lﬁx(gold ,9) < 0.

\ v | I Et[ 7T9((lt | -S't) ‘it}

“Trust Region” Moo (a2 | 5t




Proximal Policy Optimization (PPO)

Off-policy Policy Gradient

1 W& o (a;
Vel @) =522 T

Variance Reducing 2

1 SN & To (@ ¢
Vel0)=§ 20 o

Si,t)

Sz’,t)

S; ¢) v 9 9
o log ﬂgt(ai,t \ Si,t) Qi,t _ EQi,t
J

2 \

V@’ log ng(ai’t ‘ Si,t)@i,t

|
“advantage ” A, ,

How to introduce trust region efficiently? CLIP: clip (z,l,v) = min (max (z,1) ,u)

1 L& T (it | S; A A
Vo J(0) = N Z Z Clip( ¢ (8is | Sia) ,1—¢€,14 6) Vo logmg(a;s | sit) (Qz’,t — ]EQi,t)
\

Wo(az',t \ Si,t)
Y

“Trust Region by Clip”

J




TRPO and PPO

Policy Gradient Methods Trust Region Methods (TRPO)
LPG(()) — Et [lOg 7T'0((1.t l S't)At] maximize Et [ WO((l.t ‘ .S‘t) At]
0 Tooq (at | St)

g=E [V() log mg(ay | -S‘t)let] subject to  E¢[KL[mg,, (- | s¢). mo(- [ s¢)]] < 0.

Proximal Policy Optimization (PPO)

r(0) = mo (at | st)

T, q (@t | St)

LCLIP(H) — [, [min(rt(@)fit, clip(r¢(6),1 —e, 1 + G)At)]



every N steps

Model-based DRL

model-based reinforcement learning version 1.0:

1. run base policy m(a¢|st) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y. || f(s;,a;) —si|[|* = Model )

3. plan through f(s,a) to choose actions m=)  Planning

4. execute those actions and add the resulting data {(s,a,s’);} to D

model-based reinforcement learning version 1.5:
1. run base policy m(a;|s;) (e.g., random policy) to collect D = {(s,a,s’);}
2. learn dynamics model f(s,a) to minimize Y. || f(s;,a;) — si||* = Model
3. plan through f(s,a) to choose actions mm)  Planning )

Replanning . .
4. execute the first planned action, observe resulting state s’ (MPC)

5. append (s, a,s’) to dataset D



Model-based DRL with Latent Space Models

N T

1
max - D ) logpg(gy(0641.0)9y(04,i), ari) + 10g pg(04,i]gy (0r,:))+ 108 g (74,i |9y (04,3))

1=1 t=1 .
Latent Space Dynamics Image Reward Model

Reconstruction

Many practical methods consider a Stochastic Encoder for Model Uncertainty.



Model-based DRL with Latent Space Models
() (@) (o) ()

x5

model-based reinforcement learning with latent state:

~

. run base policy m(as|os) (e.g., random policy) to collect D = {(o, a, 0’ )m

learn pg(St+1(8t, at), pe(re[st), p(ot|st), gy (ot)

plan through the model to choose actions

. execute the first planned action, observe resulting o’ (MPC)

SN S

append (o, a,o’) to dataset D /

/ every N steps




Imitation Learning

supervised
et learning

training To (at|0t)

Behavioral Cloning



Inverse Reinforcement Learning (IRL)

Infer reward functions from demonstrations

> D>V
v
B

Various Reward Functions

K K

* Underspecified problem

* Many reward functions can explain the same behavior



Inverse Reinforcement Learning (IRL)

Inverse reinforcement learning

@ven: \

states s € S, actions a € A

“forward"” reinforcement learning

given: \

states s € S, actions a € A

: . ,
(sometimes) transitions p(s’[s, a) (sometimes) transitions p(s'[s, a)

samples {7;} sampled from 7*(7)

reward function r(s, a)
learn ry(s,a)  Reward

\ learn 7*(als) / N Parameters
\..and then use it to learn 7T*(a|SV

linear reward function:

ry(s,a) = Y, bifi(s,a) = " f(s, a)




given:
Learn Optimality Variable [ samples {r;} sampled from w*(ﬂ]

P70, ¥) %/)GXP (Z W(St’at)> \ / 7))dr
t exp T’w

can ignore (independent of 1))

N

1
maximum likelihood learning: [mgx N Z log p(7i|O1.1, ¥) max N Z ry(7i) — log Z
i=1

‘ partition function

VoL = 5 3o Varu(m) - 5 [ p(r)exp(ry(r)Vury(r)dr

p(T|OlzT7w> )

VL = Ernr () [Vyry (7)) = Erapr101.0,0) [V (T)]

/ .

estimate with expert samples : soft optimal policy under current reward

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll




Estimation of Expectation

VoL = Errr(r)[Vyry (7)) = Eropr101.0,0) [V (T)]

\ )
|

Vs Z T4 (St at)]
/t—

T
— Z E<Staat)NP<St,at|01:T,tD) [V¢T1b (St> at)]

t=1 L J
1

[ pladlsi, Ovr. )p(s:lOvr, )

backward message 4 N
~Blsi.a) x a(s0)8(s:)
Bi(st,at) = p(Orrlss,ar) = t t

B(st) N

forward message a:(st) = p(s¢|O1.4—1)

ETNP(T|(91:T,¢)

[p(at|St, O1r.1, ¢)p(5t|(91:T>¢) X B(St, at)Oé(St)]




IRL Algorithm: MaxEnt

[ let p1¢(st,az) o< B(st, ag)a(sy) ] VoL = Erre (1) [Vory(75)] = Erp(r| 00, 0) [VpTy (T)]

\ J
I

L T
Z//ﬂt(St,at)Vwm(st,at)dstdat = Zﬁfvwf’w
t=1 7

state-action visitation probability for each (s;, a;)

MaxEnt;: Visitation Frequency

1. Given v, compute backward message (s, a;)
2. Given 9, compute forward message a(s;)
3. Compute p¢(se,as) o< B(se, ar)a(st)

4. Evaluate qu)ﬁ - % fo\il 23;1 Vd)’l“w (Sf,;’t, a,,;,t)—zz;l f f ,U,t(St, at)V¢r¢ (St, at)dstdat
5. Y~ Y +nVyL




Offline Reinforcement Learning

Reinforcement Learning with Online Interactions

Offline Agent

Loggqd Interactjons

\—/



Off-policy and Offline DRL

“Off-Policy” buffer “Off-Policy” buffer from
from past policies some

rollout data {(si,a;,s.,r;)}

4 | s,r 1 )
- Tk ‘
. date | S
a | “p ] |
\ rollout(s) / T [ ﬂ-k-l_ 1 rollout(s) / : 7T | e, deployment j
t ktl data collected ONCE = == == == = 1
with any policy training phase

» Off-Policy DRL Algorithms « Offline DRL Algorithms



Offline Reinforcement Learning

[Supervised Learning

Can do as good as the dataset!

Offline Reinforcement
lf,efﬁ'Hquetter than the dataset!

Can show that Q-learning recovers optimal policy from random data.



Conservative Q-Learning (CQL)

« Conservative Q-learning (CQL): aims to address these
limitations by learning a conservative Q-function such that the
expected value of a policy under this Q-function lower-bounds
its true value.

* To prevent overestimation: learn a conservative, lower-bound Q-

function by additionally minimizing Q-values alongside Bellman
error objective.

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline RL. NeurlPS 2020.



Conservative Q-Learning (CQL)

* Policy Evaluation: Minimize big

Q-values

- k 1 - :
[Q e arg ngn a Es~Dla~p(als)

(@(s,2)] + % Eeanp [(Q(S, a) — B"Q" (s, a))QU

 Furthermore, improve the bound by introducing an additional
Q-value maximization term.

4 )

Minimize big Maximize Data

/ Q-values / Q-values

Qk+1 < arg Hgll Q- (Es-w'D a~(a|s) [Q(S, a)] — Esup a~Tg(als) [(1,)'5 HI])

o /




Conservative Q-Learning (CQL)

 How should we utilize this for policy optimization?
» Alternate between performing full off-policy evaluation for
each policy iterate, and one-step of policy improvement.

Minimize big Maximize Data
Q-values / Q-values

H%:i)n Hl'ﬂ'x Cx ‘(:Esw'D,am,i.! (als) [Q(S a}] o ESN’D‘,aN‘ﬁﬁ (als) [Q(S* a)])
) T

F

+3 Es,a,s’w’D [(Q(S~ a)‘ - B'Lka (S: a)) j| +R L) (CQL(R))
~ \

o L
Regularization

Standard Bellman
Error

CQL Algorithm:
! ang 1. Learn QAE‘QL using Ofﬂine data D

2. Optimize policy w.r.t. QEQL : T4 argmax E, [Q@QL]



Model-based Offline Policy Optimization (MOPO)

e Standard model-based methods: designed for the online setting,
do NOT provide an explicit mechanism to avoid the distributional

shift issue.

* MOPO: modify the existing model-based RL by applying them with

rewards artificially penalized by the uncertainty of the dynamics.



Model-based Offline Policy Optimization (MOPO)

* MOPO: modify the existing model-based RL by considering such
rewards artificially penalized by the uncertainty of the dynamics.

¥

Algorithm 1 Framework for Model-based Offline Policy Optimization (MOPO) with Reward Penalty

Require: Dynamics model 7" with admissible error estimator u(s, a); constant .
I: Define 7(s,a) = r(s,a) — Au(s,a). Let M be the MDP with dynamics T and reward r-.
2: Run any RL algorithm on M until convergence to obtain 7 = argnuixﬁnﬁ(fr)

¥

e Maximum standard deviation of the learned models in the ensemble:

u(s,a) = lllax?':l ||Z.i, (s,a)|F

['F('S-, a) =7(s,a) — Amax;—; . N ||X}(s, HJHF]




Model-based Offline Policy Optimization (MOPO)

Algorithm 1 Framework for Model-based Offline Policy Optimization (MOPO) with Reward Penalty

Require: Dynamics model T with admissible error estimator u(s,a); constant \.
1: Define 7(s,a) = r(s,a) — )\u(s a). Let M be the MDP with dynamics T and reward 7.
: Run any RL algorithm on M until convergence to obtain 7 = argmax 75 (7)

* Model the dynamics using a neural network that outputs a Gaussian
distribution over the next state and reward:

To.s(stx1.7[5¢,ae) = N(po(se,ai), Ly(se,a))

e We learn an ensemble of N dynamics models, with each model trained
independently via maximum likelihood.

- ; vi1 N
{_Té,rﬁ T l\'( H*L‘dJ) i=1



Decision Transformer

return state action

Reinforcement Learning via Sequence Modeling



Decision Transformer

* Reinforcement Learning via Sequence Modeling, where the input is

T
» T > I 2 :
{Rt7 St7 a¢ }t:() Rt — Ty
t' =
* Via autoregression, the generated output Is
T
{at }t:O

* The architecture of network is decoder only, masked multi-head self-attention.
* Position embedding: one timestep corresponds to three tokens (r,s,a)
* Embedding = embedding + position embedding



Outline

[ Deep Reinforcement Learning

. Applications to Robotics

50



Applications to Robotics

» SAC for Robot Walking
» Policy Learning for Footed Robot

» Robot Manipulation



Soft Actor-Critic

Algorithm 1 Soft Actor-Critic

Initialize parameter vectors v, v, 0, ¢.
for each iteration do
for each environment step do
ag ~ To(at[st)
St4+1 ™~ p(5t+1 |5tgat)
D« D U{(s¢, az,r(s¢, a¢),8¢+1) }
end for
for each gradient step do
e = A Vudv (W)
0, + 0, — AQVQI.JQ(GI‘) fori € {1,2}/'
¢+ & —AVsJr (@)  —~ Update Policy
Ve T+ (1 —T)Y
end for > Update target value network
nd for

Update value V

Update Q

use the minimum of Q-functions for the value gradient



Domain Adaptation for Quadruped Robot

* Unobservable Privileged Information

* a base policy
e an adaptation module

 Trained on a varied terrain
(simulated) generator using

bioenergetics-inspired rewards.

* Deployed on a variety of
difficult terrains.

Al TraningISImilation: =z  esasssssscesvmmvrassssesssnsevesss s

Phase 1 [ X, a,_;
Mass, COM, Friction : --
’ A Base Policy (7]
Terrain Height (et) —»| Env Factor Encoder (i) |—> Sl .
Motor Strength 1 '
4 . :
*Trainable Modules in Red Regress -

Phase 2
( X_s1,8,_5 ) g

.
[ X1, G4y ]"

4
BlDeployment == === suissssshissssidieeniiiaessnree
v

% B i

( X500 %51 )" : Base Policy (7) | , a_. . o Ol

. Adaptation Module (¢) 100 Hz 2 p

10 Hz

( Xp Gy )




Domain Adaptation for Quadruped Robot

* Unobservable Privileged Information

. (A) Training in Simulation Env Extrinaics ()
* a base policy o
. End-Effector Mass Privileged Info Encoder E . Manipulation
e an adaptation module S w) ~E=)- ey
Leg Streng[h ' ‘\" p0||cy A i
oL Sugerviss Locomotion
e iy s—- a'e soaae
: Adaptation Module ' F:nlicﬂoon
. . . : — »
* Mobile Manipulation, ¢ H  (commands) s~
Whole-Body CONtrol, o s
Y . ! (B) Deployment in Real World
Le gge d LO com Ot 1on Teleoperation Vision Demon_s_t@tlons

' ' — |
...... .

T H . 4

. . .

' ' '

. . A .

' . - .

. . o,

' . -

—p—

Pt B o O L WO -m
E —- | Adaptation Module (@) ||
s e e 50Hz

Unified Policy (7)
50Hz

54



DRL-based Decision Strategy

Risk Assessment Network(RAN) in DRL for safety locomotion

Environmen
Sensing

Desired Foot
Posii

Risk
Assessment

Inverse
Kinematics

Desired Joint
Positi

PD Controller

Torque

The RAN is incorporated into the model-free RL

(e.g. SAC algorithm) as a penalty item & to the
loss function of the value and policy function.

Ll Result

Performance of teacher policy in tough terrain

Slippery Flat Hills Steps
- -
Upward Stairs Downward Stairs Parapet

Trotting

Roug dewalk Synthetic racelrack

95



Hierarchical RL for Quadruped Robot

Hierarchical Reinforcement Learning Control Strategy

Observation

~

Desired base pose | Model-Based Stance leg torque
Terrain-Aware l Controller

Pla.nner )

Desired foothold Swing leg torque

Swing Leg
Controller

ansnzt

Quadruped adjust the posture adaptively varying the
terrain changes

56



Robotics Transformer (RT-1)

< Action

’4’ (/ RT-1 \\: Mode Am Base

3 Hz 74
FiLM \\\J/

EfficientNet TokenLearner Transformer

g= B,

 RT-1 takes images and natural language instructions and

outputs discretized base and arm actions.
* Despite its size (35M parameters), it does this at 3 Hz.
e Efficient yet high-capacity architecture:
e AFiLM (Perez et al., 2018) conditioned EfficientNet (Tan & Le, 2019)

e A TokenLearner (Ryoo et al., 2021)
e A Transformer (Vaswani et al., 2017).

Instruction

‘ Pick apple from top drawer and place on

counter

Images

57



Instruction "\ Time
Pick apple from top drawer and place on counter 6 images
Images
6 images

300 width x 300 height x 3 RGB channels

MBConv " (FiLM EfficientNet-B3

512 (1+ D & Fi Fuses image and language into tokens
(1) B FiLM) ImageNet pretrained
Identity-initialized FiLM
MBConv
26 MBConv Blocks
(1+y) -+ B(FiLM) 26 FiLM Layers Interweaved
6M parameters
MBConv

(1+y) -+ B(FiLM)

Robotics -

Transformer m ===
RT-1

! | 9tokens x 9 tokens x 512

TokenLearner
Spatially attends over tokens

34k parameters
8 tokens x 512

Tokenized Inputs
/48 tokens x 512

— [ ) Positional Encoding

Self-Attention 1 [ Transformer
Decoder-only

8 self-attention layers
Self-Attention . | 19M parameters

Mode Arm Base Action

am, bese, tlerminate  gripper position, rotation, position, cosure  position, orentation
11D, discrete action space




Robotics Transformer (RT-1)

Trained on 700+ tasks, 130k demonstrations Generalizes to tasks

 RT-1’s large-scale, real-world training (130k demonstrations)

and evaluation (3000 real-world trials)

Long-horizon tasks

New data sources

 Impressive generalization, robustness, and ability to learn

from diverse data

59



PaLM-E

Mébile Manipulation PaLM-E: An Embodied Multimodal Language Model

Given <emb> ... <img> Q: How to grasp blue block? A: First, grasp yellow block

? ViT

Large Language Model (PaLM)

Human: Bring me the rice chips from the
drawer. Robot: 1. Go to the drawers, 2. Open

Task and Motion Planning

Given <emb> Q: How
to grasp blue block?
A: First grasp yellow
block and place it on
the table, then grasp
the blue block.

Tabletop Manipulation

Given <img> Task: Sort

top drawer. | see <img>. 3. Pick the greenrice el s o
chip bag from the drawer and place it on the [ Control }7 A: First, grasp yellow block and ... Step 1. Push the green
COMIE star to the bottom left.
Visual Q&Ay Captioning ee . Language Only Tasks Step 2. Push the green
\ - Describe the circle to the green star.
~ Given <img>. Q: What's in the following <img>: Here is a Haiku about
image? Answer in emojis. A dog jumping embodied language models: Q: Miami Beach borders which ocean? A: Atlantic.
AP PO9PDS. G n bl ova Embodied language Q: What is 372 x 182 A: 6696.
dog show. models are the future of Language models trained on robot sensor data can
natural language be used to guide a robot’s actions.
v

[Robotics Transformer (RT—1)]

60



RT-2

* LLM + RL: RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control

Internet-Scale VQA + Robot Action Data Vision-Language-Action Models for Robot Control Closed-Loop
Q: What is h ' Robot Control
i at IS happening Q: What should the robot 5
in the image? do to A RT—2

—3 X X
A grey donkey walks
down the street.

Put the strawberry
ViT — into the correct bowl

Q: Que puis-je faire avec
ces objets?

[Faire cuire un géteau'] ) :

1

AT=[0.1,-0.2, 0]
(A: 132114 128 525 156 |

AR=[10’, 25’ -77

Q: What should the robot De-Tokenize
do to ? Robot Action
5 t |
" | ATranslation = [0.1, -0.2, 0] >
ARotation = [10°, 25], -7°] Co-Fine-Tune Deploy

Figure 1 | RT-2 overview: we represent robot actions as another language, which can be cast into text tokens and
trained together with Internet-scale vision-language datasets. During inference, the text tokens are de-tokenized
into robot actions, enabling closed loop control. This allows us to leverage the backbone and pretraining
of vision-language models in learning robotic policies, transferring some of their generalization, semantic
understanding, and reasoning to robotic control. We demonstrate examples of RT-2 execution on the project
website: robotics—transformer2.github.io.

61









QUART

Architecture of QUART-1 and QUART-2

By combining FiLM, TokenlLearner,
and a transformer decoder, QUART-1
generates discretized action tokens.
In contrast, QUART-2 is designed to
leverage the scene comprehension
capability of a pretrained VLM.

Training Stage

VLA

Model

Inference Stage

Go to Object

unload object
sim

what action should

Ssim Real

the legged robot
take to {Task}
{speed} with {Gait}

£

Ccrawl under object

Go to Object

B e e B e —mm - : — = &
DM OO0 |

velocity Gait B-Pose FootTer .

Real ' 5 "
VUgy Uy, Wy, 01 ’ f)-_». 0;;. f h;. D, 8y, hi i -
Co-training Deploy
QUART-1 QUART-2
"distinguish f "go to the texture
from b" computer”
Instruction W Instruction W
Concat End m
A
Tokenizer 7 T
" g
l- (=
Start 3 ; ]
& *
Action a -3
0 @@ @O0 ® Sim
Velocity Gait B-Pose Foot Terminate

"go to the backpack” "go to the chair”




Cobra

I:l LLaVA v1.5

' MobileVLM v2

.| Cobra

& Can you describe the image in detail?

The image features a black and white checkered floor with a variety of colorful
foys scattered acrossi it. ...... Additionally, there are two toy cars, one located
towards the left side of the floor and the other towards the right side. ......

(+ v\ The image presents a 3D rendering of a , Which is the central focus
\_/ of the image. ...... In the top right corner of the board, there’s a , which
appears to be the central object of the game. ......

The image shows a computer-generated scene with a white, cylindrical object,

possibly a piece of machinery or a robot, surrounded by various colored blocks.
The blocks are of different shapes and co/ors /nc/udmg red, yellow, and blue.
The scene appears to be a « uter-gene o image, possibly a 3D model or

a digital artwork.The image is a close up view of the object, emphasizing its
cylindrical shape and the surrounding blocks.

65



Conclusion

* DRL basics and Model-free DRL
* Model-based DRL

* Inverse Reinforcement Learning
* Offline Reinforcement Learning

* Large Pre-training DRL Model

* Applications to Robotics: Robot Arm and Footed Robot



