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v Model-free DRL

v Model-based DRL

v Inverse Reinforcement Learning

v Offline Reinforcement Learning

v Large Pre-training DRL Model

Deep Reinforcement Learning (DRL)



1. run away
2. ignore
3. pet

Terminology & Notation of DRL



Goal of DRL



Policy Gradients 

“reward to go”

Baseline:



Value function Fitting

I:

II:



Actor-Critic Algorithm (with Discount)

Run policy: 
1. Collect data 
2. Fit value function

Update policy: 
1. Evaluate Advantage A 
2. Gradient Descent



“Max” Trick to Remove Policy Gradient
Max Trick for Q-Value

Problem 1): Correlated samples; 
Solution: Replay Buffer;

off-policy  
Q-learning

dataset of transitions
(“replay buffer”)



“Max” Trick to Remove Policy Gradient
Problem 2): Q-learning is not gradient descent!

no gradient through target value

Target network

Targets don’t change in inner loop! But regression is more stable.

Idea?



Q-Learning with Replay Buffer and Target Network

Targets don’t change in inner loop!

Supervised
Regression

Target: copy value network!



DRL Algorithms

§ DQN (Deep Q Network):
• Use NN to estimate Q;
• Experience replay and fixed target 

network for convergence;
• Variants: Double DQN, Prioritized 

replay, Dueling DQN, Categorical DQN,
Noise DQN, Rainbow

§ PG and Actor-Critic:
• Variants: AC, A2C, A3C and SAC

§ DPG and DDPG:
• Deterministic policy gradients

§ TRPO and PPO



Deep Q Network
• DQN: Use deep NN to compute Q, which is a value-based method
• Before DQN, all attempts failed due to the instability:

o Unknown reward scale of Q-value, leading to the failure of gradient BP;
o Strong correlation between continuous-input data or image, leading to easy 

convergence;
o Even a fine variation on Q-value causes a huge change on policy (From one end to 

another).

• Solution from DeepMind
o Clip rewards or normalize network adaptively to sensible range;
o Experience Reply (NIPS): store experience (s,a,r,s’); randomly drawn;
o Freeze target Q-network:

𝑙𝑜𝑠𝑠 = 𝑟 + 𝛾max
!"

𝑄 𝑠", 𝑎", 𝐰# − 𝑄 𝑠, 𝑎,𝐰
$



Deep Q Network
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Q-learning Q-learning+Target Q Q-learning+Replay Q-learning+Replay+Target Q

Replay + Target Q
Both are indispensable



Overestimation of Q-learning in DQN

Overestimation:



Double DQN

Target network: valueCurrent network: action



Multi-Step Returns

+ less biased target values when Q-values are inaccurate



Dueling DQN

Dueling NetworkDQN

Q(s,a) Q(s,a)

A(s,a)

V(s)

•Dueling Network: Q=V+A separate state value V and advantage A
oValue function V measures the value how good it is to be in a particular state s.
oHowever, Q function measures the value of choosing a particular action when in 
this state.
oAdvantage function A obtains a relative measure of the importance of each action.



Prioritized Replay
• Use priority queue to weight experiences in experience Memory based on their 

error (surprise) in DQN

• The bigger the TD error, the higher the priority.



Rainbow
• Rainbow is a model-free, off-policy, value-based and discrete DRL method.
• Rainbow combines all 6 improvements in DQN, including 
• Double Q-learning
• Multi-step learning
• Dueling networks
• Prioritized replay
• Distributional RL: Q value becomes Q distribution (more stable)

• Noisy Nets
     1) independent Gaussian Noise: add noise on weights and No. is p*(q+1).
     2) Factorized Gaussian noise: add noise on neurons and No. is p+q 



Soft Actor-Critic

• Soft state value function: 

• Standard RL maximizes the expected sum of rewards:

• SAC favors stochastic policies by augmenting the objective with the expected entropy 
of the policy:



Soft Actor-Critic

• Soft value function V (MSE):

Value 
Network

Value 
Target

Q 
Network

Policy 
Network



Soft Actor-Critic

• Policy parameters learned by minimizing expected KL-divergence: 

• Soft Q-function parameters Q (MSE):

• Target value network (for overestimate): moving average of value network weight 



Soft Actor-Critic

Update value V

Update Q

Update Policy

Update target value network

use the minimum of Q-functions for the value gradient



Q-learning with continuous actions

What’s the problem with continuous actions?

this max

this max particularly problematic

How do we perform the max? 



DDPG-Learn an Approximate Maximizer

Policy Network; deterministic

Value Network

DDPG:



Trust Region Policy Optimization (TRPO)
Recall:

Problem: unstable!

Bad 𝛼 may cause terrible policy 𝜋!!

Question: How to make policy monotonic improved?  (always cause better policy?) 

“Trust Region”



Proximal Policy Optimization (PPO)
Off-policy Policy Gradient 

Variance Reducing 2

“advantage ”

How to introduce trust region efficiently?  CLIP: 

“Trust Region by Clip”



TRPO and PPO

Policy Gradient Methods Trust Region Methods (TRPO)

Proximal Policy Optimization (PPO)



Model-based DRL

Model

Planning

ev
er

y 
N

st
ep

s

Model

Planning
Replanning



Latent Space Dynamics Image
Reconstruction

Reward Model

Many practical methods consider a Stochastic Encoder for Model Uncertainty.

Model-based DRL with Latent Space Models
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Model-based DRL with Latent Space Models



training  
data

supervised  
learning

Imitation Learning

Behavioral Cloning



Inverse Reinforcement Learning (IRL)
Infer reward functions from demonstrations

• Underspecified problem

• Many reward functions can explain the same behavior

Various Reward Functions



“forward” reinforcement learning Inverse reinforcement learning

Reward
Parameters

Inverse Reinforcement Learning (IRL)



Learn Optimality Variable



Estimation of Expectation



IRL Algorithm: MaxEnt

Visitation Frequency MaxEnt:



Offline Reinforcement Learning



Off-policy and Offline DRL

• Off-Policy DRL Algorithms

“Off-Policy” buffer
from past policies

“Off-Policy” buffer from 
some unknown policies

• Offline DRL Algorithms



Can do as good as the dataset!

Can do better than the dataset!

Stitc
hing

Can show that Q-learning recovers optimal policy from random data.

Supervised Learning
Dog?

Cat?Offline Reinforcement 
Learning

Offline Reinforcement Learning



Conservative Q-Learning (CQL)

• Conservative Q-learning (CQL): aims to address these 
limitations by learning a conservative Q-function such that the 
expected value of a policy under this Q-function lower-bounds 
its true value.

• To prevent overestimation: learn a conservative, lower-bound Q-
function by additionally minimizing Q-values alongside Bellman 
error objective. 

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline RL. NeurIPS 2020.



• Policy Evaluation:

• Furthermore, improve the bound by introducing an additional 
Q-value maximization term.

Minimize big  
Q-values

Minimize big  
Q-values

Maximize Data  
Q-values

Conservative Q-Learning (CQL)



• How should we utilize this for policy optimization?
Ø Alternate between performing full off-policy evaluation for 

each policy iterate, and one-step of policy improvement. 

Conservative Q-Learning (CQL)

Minimize big  
Q-values

Standard Bellman  
Error

Maximize Data  
Q-values

Regularization



Model-based Offline Policy Optimization (MOPO)

• Standard model-based methods: designed for the online setting, 

do NOT provide an explicit mechanism to avoid the distributional 

shift issue.

• MOPO: modify the existing model-based RL by applying them with 

rewards artificially penalized by the uncertainty of the dynamics.



Model-based Offline Policy Optimization (MOPO)

• MOPO: modify the existing model-based RL by considering such 
rewards artificially penalized by the uncertainty of the dynamics.

• Maximum standard deviation of the learned models in the ensemble:



Model-based Offline Policy Optimization (MOPO)

• Model the dynamics using a neural network that outputs a Gaussian 
distribution over the next state and reward:

• We learn an ensemble of N dynamics models, with each model trained 
independently via maximum likelihood.



Decision Transformer

Reinforcement Learning via Sequence Modeling



Decision Transformer
• Reinforcement Learning via Sequence Modeling, where the input is

• Via autoregression, the generated output is

• The architecture of network is decoder only, masked multi-head self-attention.
• Position embedding: one timestep corresponds to three tokens (r,s,a)
• Embedding = embedding + position embedding
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v SAC for Robot Walking

v Policy Learning for Footed Robot

v Robot Manipulation

Applications to Robotics



Soft Actor-Critic
Training

Testing 1

Testing 2

Update value V

Update Q

Update Policy

Update target value network

use the minimum of Q-functions for the value gradient



Domain Adaptation for Quadruped Robot

53

• Unobservable Privileged Information

• a base policy 
• an adaptation module

• Trained on a varied terrain 
(simulated) generator using 
bioenergetics-inspired rewards. 

• Deployed on a variety of
difficult terrains. 



• Unobservable Privileged Information

• a base policy 
• an adaptation module

• Mobile Manipulation, 
Whole-Body Control, 
Legged Locomotion

Domain Adaptation for Quadruped Robot
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Risk Assessment Network(RAN) in DRL for safety locomotion

Environment 
Sensing

Risk 
Assessment

Result

The RAN is incorporated into the model-free RL 
(e.g. SAC algorithm) as a penalty item δ to the 
loss function of the value and policy function.

55

DRL-based Decision Strategy



Hierarchical Reinforcement Learning Control Strategy

Quadruped adjust the posture adaptively varying the 
terrain changes

56

Hierarchical RL for Quadruped Robot
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Robotics Transformer (RT-1)

• RT-1 takes images and natural language instructions and 
outputs discretized base and arm actions.

• Despite its size (35M parameters), it does this at 3 Hz.
• Efficient yet high-capacity architecture: 
• A FiLM (Perez et al., 2018) conditioned EfficientNet (Tan & Le, 2019)
• A TokenLearner (Ryoo et al., 2021) 
• A Transformer (Vaswani et al., 2017).
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Robotics 
Transformer 

(RT-1)
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Robotics Transformer (RT-1)

• RT-1’s large-scale, real-world training (130k demonstrations) 
and evaluation (3000 real-world trials)

• Impressive generalization, robustness, and ability to learn 
from diverse data
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PaLM-E

Robotics Transformer (RT-1)



RT-2

Action: LLM + RL 
61

• LLM + RL: RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control



Action in Robotics

Action: LLM + RL 
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• LLM + RL: RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control



Action in Robotics

Action: LLM + RL 
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• LLM + RL: RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control



QUART

64

• By combining FiLM, TokenLearner, 
and a transformer decoder, QUART-1 
generates discretized action tokens. 

• In contrast, QUART-2 is designed to 
leverage the scene comprehension 
capability of a pretrained VLM. 

Architecture of QUART-1 and QUART-2



Cobra

Action: LLM + RL 
65



Conclusion

• DRL basics and Model-free DRL

• Model-based DRL

• Inverse Reinforcement Learning

• Offline Reinforcement Learning

• Large Pre-training DRL Model

• Applications to Robotics: Robot Arm and Footed Robot


